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Abstract—To accommodate low latency and
computation-intensive services, such as the Internet-
of-Things (IoT), 5G networks are expected to have
cloud and edge computing capabilities. To this end,
we consider a generic network setup where devices,
performing analytics-related tasks, can partially
process a task and offload its remainder to base
stations, which can then reroute it to cloud and/or
to edge servers. To account for the potentially
unpredictable traffic demands and edge network
dynamics, we formulate the resource allocation as
an online convex optimization problem with service
violation constraints and allow limited communication
between neighboring nodes. To address the problem,
we propose an online distributed (across the nodes)
primal-dual algorithm and prove that it achieves
sublinear regret and violation; in fact, the achieved
bound is of the same order as the best known
centralized alternative. Our results are further
supported using the publicly available Milano dataset.

Index Terms—Online convex optimization, edge
computing, resource allocation, distributed algorithms.

I. Introduction
A. Motivation

It is envisioned that globally more than 29.3 billion
networked devices will be connected to the Internet of
Things (IoT) by 2023 [1], offering automation and real-
time monitoring of machine and human-driven processes.
A main challenge in IoT deployment lies with the massive
amount of connected devices; and in particular with
the device heterogeneity (e.g., different computational
capabilities) and the diverse and potentially stringent
service (task) requirements [2]. To host the unprecedented
IoT data traffic, the edge computing paradigm has recently
gained a lot of momentum as complementary to that of
the cloud and it has been deemed as a key enabler to
what ultimately will be the so-called “Cloud-to-Things
Continuum” [3], [4].

In that framework, a plethora of spatially distributed
devices collect data from sensors and perform low-latency
impromptu computation (e.g., machine-learning inference)
using energy-limited resources. The envisaged “Cloud-
to-Things Continuum” allows flexible task offloading
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from an IoT device, via base stations, towards more
computationally powerful edge servers and, if needed,
to the cloud. Although this architecture is promising,
allocating resources for IoT computations has two distinct
fundamental challenges: (a) the resources are allocated in
the presence of highly unpredictable and non-stationary
request patterns (demands) and network conditions; (b)
the network nodes handling those tasks, namely devices,
base stations and servers, are distributed and should act in
the absence of a centralized entity with full observability.
Naturally, the following question arises:

“Can we offer an efficient distributed data-driven
algorithm for resource allocation in the IoT context?”

In order to address this question, in this paper we
consider a distributed setting with nodes of different
capabilities and employ Online Convex Optimization
(OCO) [5]. The use of OCO is suitable for problems that
are difficult to model due to unpredictable dynamics and
provides concrete theoretical guarantees for such problems
even in the worst-case.

B. Related Work
The related literature can be split into two categories.

The first corresponds to studies of IoT network
optimization in the edge-cloud setting, using similar
system model and assumptions to ours. An offline version
of the problem is formulated and then decomposed across
its different domains (fog and cloud) in [6], resulting
in convex subproblems. In [7], the authors consider the
latency minimization and develop an algorithm based on
the online secretary framework—however, no constraints
are used in their formulation. Closer to our work, [2], [4]
formulate the resource allocation as an OCO problem, and
model the service violations as long-term constraints. The
learning rate is adapted to the different IoT tasks in [2];
and further extending the notion of constraint violation
(see [8]), the number of violations is also considered in [4].
Unlike our work, both approaches are centralized.

The second one deals with works on OCO with
constraints in generic settings, such as [9]–[11]. Although
generic, these works do not apply to our problem as they
develop centralized algorithms. Delayed feedback on the
cost and constraint functions arrive to a centralized agent
in [12]; our approach adopts a different feedback model
based on limited exchange of information between nodes.



Finally, a distributed OCO algorithm in an environment
with time-varying constraints is presented and analyzed
in [13], but, unlike our approach, the nodes/actors use
synchronous information and make consensus steps.

C. Contributions and Structure
In this work, we approach the resource allocation in

an edge-cloud scenario in a distributed way; our main
contributions can be summarized as follows.

(C.1) We model the resource allocation as a distributed
constrained OCO problem. The network nodes (devices,
base stations, edge servers) are cast as individual OCO
agents that must collectively optimize a given network
performance metric and satisfy service requirement
guarantees (modeled as long-term constraints). To this
end, we define a limited communication model between
neighboring agents that allows them to exchange crucial
information, related to their coupling constraints.

(C.2) We propose an online primal-dual algorithm,
based on projected gradient descent, with a sub-linear
regret bound O(T 1/2) and a sub-linear constraint violation
bound O(T 3/4). These bounds are equivalent to a
centralized approach besides a multiplicative factor.
We validate our theoretical results with numerical
simulations on a commonly used dataset, and compare the
performance of our algorithm to benchmarks.

The remainder of this paper is organized as follows.
We summarize our system model and assumptions in
Section II. Then, we introduce the OCO formulation of
the problem and present our proposed algorithm and
its theoretical guarantees in Section III. We show our
numerical results in Section IV and conclude the paper
in Section V.

II. Problem Setup
In this section we present our network model and main

assumptions. In particular, we start by the edge computing
components that are available in our IoT application;
then we present the control (optimization) variables, and
finally we discuss our performance objectives and system
constraints.

In what follows, we use bold fonts for vectors and
matrices, and A for a set with |A| = A elements.

A. Topology and Computational Requests
We consider a layer of IoT sensors, which receive

computational requests (e.g., analytics tasks) that need to
be executed, similarly to [2], [4], [6], [7], [14], [15]. Time is
slotted and at every timeslot t those requests arrive to a set
of devices D. We denote the vector of requests as rt ∈ RD

+ .
Before rt is revealed, the Network Operator (NO) has to
reserve resources across its network infrastructure in order
to accommodate them.

We assume that the network consists of the following
nodes, as shown in Fig. 1.

• Devices at the edge, denoted by D;

Devices BSs Servers

Cloud

Fig. 1: Topology of our edge computing setting

• Base Stations (BSs) at the edge, denoted by B;
• Servers at the edge, denoted by S;
• A cloud server at the core network, denoted by C.

Throughout the rest of this work, we will refer to the above
entities (except for the cloud) as “nodes” or “agents”. We
denote by N the set of all nodes across the network with
N = D + B + S.

Each device can process locally part of the computation
and can also offload tasks via a wireless channel to the
BSs. Then, the BSs can forward an incoming task either
to the edge servers (wirelessly) or to the cloud. Finally,
each edge server can process the received tasks locally,
reroute to other edge servers or forward to the cloud; the
latter only executes tasks. For simplicity, we assume full
connectivity between nodes, but our methodology applies
to any connectivity graph.

B. Distributed Control Variables
The NO wishes to optimize a set of performance metrics

in a distributed manner. Therefore, we wish to design a
system where each agent decides its own actions. At every
t, the control variables for every device d ∈ D, BS b ∈ B
and server s ∈ S are

xt
d = [wt

d0, wt
d1, . . . , wt

dB , pt
d1, . . . , pt

dB ] ∈ R2B+1
+ (1)

xt
b = [yt

bC , yt
b1, . . . , yt

bS , qt
b1, . . . , qt

bS ] ∈ R2S+1
+ (2)

xt
s = [zt

sC , zt
s1, . . . , zt

sS ] ∈ RS+1
+ . (3)

For each device d, wt
d0 is the locally executed tasks

and wt
db, pt

db are the offloaded tasks and the respective
transmission power to each available BS. For each BS b,
yt

b,C denotes the tasks offloaded to the cloud and yt
bs, qt

bs

are the offloaded tasks and the respective transmission
power to each available server s ∈ S. Finally, for each
server s, zt

sC is the offloaded tasks to the cloud and zt
ss′

is the offloaded tasks to each available server s′ ∈ S,
including zt

ss that denotes the locally processed tasks.
For every t, it must hold xt

d ∈ Ωd, xt
b ∈ Ωb, xt

s ∈ Ωs,
where Ωd, Ωb, Ωs are time-invariant box constraints of the
form {x : 0 ≤ x ≤ x̄}. Note that these constraints are
local, meaning that an agent needs no external information



in order to satisfy them. To denote the collective control
variable of all nodes, we use the following notation:

xt
D = {xt

d}∀d∈D, xt
B = {xt

b}∀b∈B, xt
S = {xt

s}∀s∈S . (4)

Finally, we use xt = {xt
D, xt

B, xt
S} ∈ Ω ⊂ RV

+ to denote all
the variables across the network, with V = D(2B + 1) +
B(2S + 1) + S(S + 1).

C. Performance Objectives
Our main target is to choose the resources xt, such

that a cumulative cost for the total delay and transmit
power across all nodes is minimized. The cost function
at each node depends on its control variables and
it is considered time-varying in order to capture the
unpredictable network dynamics at every timeslot, e.g.
the randomness of the wireless channels or the network
congestion levels. More precisely, we have the following
cost functions per node:

f t
d(xt

d) = ct
d(wt

d0) +
∑
b∈B

ct
db(wt

db, pt
db) (5)

f t
b(xt

b) =
∑
s∈S

ct
bs(yt

bs, qt
bs) + ct

bC(yt
bC) (6)

f t
s(xt

s) =
∑
s′∈S

ct
ss′(zt

ss′) + ct
sC(zt

sC). (7)

The functions ct
d(.), ct

ss(.) represent local processing
delay cost, ct

db(.), ct
bs(.) capture both delay and power

cost for the wireless links between nodes, ct
bC(.), ct

sC(.)
are used for the offloading delay cost to the cloud and
ct

ss′(.) introduces the delay cost for the wired links between
servers. At every timeslot t, the total cost is expressed as

f t(xt) =
∑
d∈D

f t(xt
d) +

∑
b∈B

f t(xt
b) +

∑
s∈S

f t(xt
s). (8)

Similar to our model, most related works, e.g., [2], [4],
[7], assume that local processing delay and communication
delay, often specified via standard queuing models, are
expressed by functions of only local control variables. As
we will see next, this is not the case for the problem
constraints, where there exist constraints that couple
agents to preserve the flow of tasks inside the network.

D. Constraints
We now focus on the constraints imposed by our

application. In practice, a good decision must first ensure
that the incoming tasks are either processed locally or
offloaded to other nodes (flow conservation constraint).
Moreover, the transmission data rate of a wireless link
must be sufficient for the assigned offloaded tasks (rate
constraint). We model these rates using the well known
Shannon capacity. All constraint functions are considered
time-varying in order to model the unknown dynamics of
incoming tasks and channel gains. Given that the agents
first reserve resources and then the tasks are revealed, it
is possible to have service violations, i.e. the provisioned
resources are not adequate or cannot be realized.

For each device d ∈ D, the constraint functions are

gt
d0(xt

d) = rt
d − wt

d0 −
∑
b∈B

wt
db (9)

gt
db(xt

d) = wt
db − bw log2

(
1 + αt

dbpt
db), ∀ b ∈ B, (10)

where bw is a constant for the transmission bandwidth and
αt

db is an unknown variable for the channel gain, including
the effect of interference and noise. In a similar way, for
each BS b ∈ B we have

gt
b0(xt

b; xt
D) =

∑
d∈D

wt
db − yt

bC −
∑
s∈S

yt
bs (11)

gt
bs(xt

b) = yt
bs − bw log2

(
1 + αt

bsqt
bs), ∀ s ∈ S, (12)

where αt
bs is defined as αt

db above. Notice that (11) is a
coupling constraint, i.e. to evaluate the function at BS
b, we need to know the external variables {wt

db}d∈D of
devices. Conventionally, we denote this dependency with
conditional arguments to distinguish from locally available
variables, as denoted by gt

b0(xt
b; xt

D). Finally, for each
server s ∈ S, we have only the following flow conservation
constraint function

gt
s0(xt

s; xt
B, xt

S−s
)=

∑
b∈B

yt
bs +

∑
s′∈S−s

zt
s′s −

∑
s′∈S

zt
ss′ −zt

sC (13)

where S−s is used to denote the set of edge servers S
excluding s. (13) is also a coupling constraint, since server
s needs to know the external variables {yt

bs}b∈B of BSs and
{zt

s′s}s′∈S−s
of other servers.

To denote the collective set of constraints per device d
and per BS b, we use the notation

gt
d(xt

d) = gt
d0(xt

d) ∪ {gt
db(xt

d)}∀b∈B (14)
gt

b(xt
b; xt

D) = gt
b0(xt

b; xt
D) ∪ {gt

bs(xt
b)}∀s∈S (15)

and write gt(xt) = {{gt
d}d∈D, {gt

b}d∈B, {gt
s0}s∈S} : RV

+ →
RM to denote all constraints across the network, where
M = B(D + S) + N .

E. Exchange of Information
Due to the coupling constraints, a fully distributed

solution is no longer possible. To circumvent this, we allow
each node to exchange information with other nodes, so
that it can take into account the coupling constraints
in its local decisions. The exact messages to exchange
is part of the algorithm design, which ideally should
achieve a performance close to a centralized approach
with a minimal exchange of information. To limit the
communication overhead, we further consider that each
node can send information to other nodes only once during
a timeslot, i.e. at the beginning of a timeslot. As we will see
in the next section, this practical assumption introduces
delayed feedback between nodes, as not all of the required
information is available for a single transmission step
within a timeslot.



III. OCO Formulation and Decentralized
Algorithm

The goal of this section is to formulate the resource
allocation, described in the previous section, as an Online
Convex Optimization (OCO) problem [5] and propose an
algorithm to solve it. Importantly, we explain how we
adapt a centralized algorithm to transcend towards one
which can run in a distributed fashion; finally, we present
the performance guarantees of our solution.

A. OCO Preliminaries
We start with the basics of OCO in a centralized

algorithm for two reasons: (a) it helps to introduce
useful concepts and metrics; and (b) we benchmark our
distributed algorithm with respect to a centralized one.
To formulate the resource allocation as an OCO problem,
we first need to define the sequence of events taking place
for the central agent during every timeslot t.

1) The agent implements an action xt.
2) The environment reveals all the unknown variables,

e.g. computation requests rt and channel gains
αt

ij , which in the OCO framework can be random
variables or even controlled by an adversary. Using
these, the functions f t(.) and gt(.) become known.

3) The agent receives or evaluates cost and constraint
violations, i.e. the values f t(xt) and gt(xt).

4) The agent updates its action to xt+1.
Below, we define the benchmark actions and the metrics

to evaluate an algorithm that produces a sequence of
actions {xt}t=1,...,T .

Definition 1 (Static Regret). The fixed optimal action x∗
and the static regret are defined as

x∗ = argmin
x∈Ω

T∑
t=1

f t(x), s.t. gt(x) ≤ 0, t = 1, . . . , T (16)

RegS(T ) =
T∑

t=1
f t(xt) −

T∑
t=1

f t(x∗). (17)

Definition 2 (Dynamic Regret). The per slot optimal
action {xt

∗}t=1,...,T and the dynamic regret are defined as

xt
∗ = argmin

x∈Ω
f t(x), s.t. gt(x) ≤ 0 (18)

RegD(T ) =
T∑

t=1
f t(xt) −

T∑
t=1

f t(xt
∗). (19)

Definition 3 (Fit). Using the clipped constraint function
ht

m(xt) := [gt
m(xt)]+ = max{0, gt

m(xt)}, the fit is defined
as

Fit(T ) =
T∑

t=1

M∑
m=1

ht
m(xt). (20)

The static regret is a standard metric for evaluating
OCO-based algorithms; however, there is also a growing
interest recently for the dynamic regret [16], which is in
principle a much harder metric. For the fit we use a clipped

version of the constraint, i.e. we do not allow negative and
positive values of the constraints to average out in the
long run. This is a suitable modeling approach, as it would
be unrealistic to assume that overprovisioning in certain
timeslots can compensate for missing resources or channel
rate violations in other timeslots. Finally, similarly to [8],
we define the gradient of hm(x) as

∇hm(x) = ∇[gm(x)]+ =
{

0 if gm(x) ≤ 0
∇gm(x) if gm(x) > 0

In the remainder, we use ht for our analysis with subscripts
that have the same meaning as for gt in (9)-(15).

Overall, the objective of an algorithm is to establish that
RegS(T ), RegD(T ) and Fit(T ) are all sublinear in the time
horizon T [5].

B. Decomposition Across the Agents
A centralized algorithm can use the Lagrange function

Lt(xt, λt) = f t(xt) +
M∑

m=1
ht

m(x)λt
m (21)

and apply the primal-dual updates [8] as follows

λt = ht(xt)
ησ

, xt+1 = PΩ
(
xt − η∇xLt(xt, λt)

)
, (22)

where λt
m is the Lagrange multiplier for constraint m, η

is the gradient step size, σ is a constant and PΩ(x) is the
projection of x onto Ω. Ideally, we want to perform these
updates in a distributed way so that they are as close as
possible to the updates of the centralized algorithm. For
any node n ∈ N (device, BS or server), we have

λt
n =

ht
n(xt

n; xt
En

)
ησ

(23)

xt+1
n = PΩn

(
xt

n − η∇xnLt(xt, λt)
)

, (24)

where En is the set of nodes with variables required for
node n, i.e. Ed = ∅, Eb = D (11), Es = B ∪ S−s (13), and
λt uses the same subscripts for constraints as gt, ht.

We now focus on the gradients in (24) and write

∇xnLt(xt, λt) = Ht
nL + Ht

nE (25)

where Ht
nL denotes the part that depends only on local

cost and constraint functions at node n,

Ht
nL = ∇xn

f t
n(xt

n) + λt⊤
n ∇xn

ht
n(xt

n; xt
En

), (26)

and Ht
nE describes the part that depends on external

constraints from other nodes. For clarity, we provide the
explicit expression for each type of node:

Ht
dE =

∑
b∈B

λt
b0∇xd

ht
b0(xt

b; xt
D) (27)

Ht
bE =

∑
s∈S

λt
s0∇xb

ht
s0(xt

s; xt
B, xt

S−s
) (28)

Ht
sE =

∑
s′∈S−s

λt
s′0∇xs

ht
s′0(xt

s′ ; xt
B, xt

S−s′ ). (29)



Notice that in (27)-(29), only one dimension of the
gradients can be non-zero, as each node has only a single
variable involved in coupling constraints of another node,
i.e. wdb, ybs and zss′ for devices, BSs and servers.

Remark 1. According to the definition of ht(.) and the
flow conservation constraints, the summation terms in
(27)-(29) simplify to λt

n0.

C. Distributed Algorithm
As one can already notice, a distributed version of the

algorithm requires exchange of information at two different
steps. Specifically, a node n needs to send its variables to
nodes that need them in their coupling constraints and
then, receive the gradient-related feedback Ht

nE . We now
turn our focus on the adopted communication model and
examine how this message exchange can be implemented.

An ideal scenario is shown in Fig. 2(a), where nodes can
send messages at any moment during a time slot, focusing
for simplicity in the link between a device and a BS. As
we can see, the BS b needs to collect xt

Eb
= {wt

db}d∈D
and perform few processing steps before it can send its
feedback to the device, which can then perform the primal
update xt+1

d . In practice, this is not possible in our model
as nodes are allowed to send messages only once at the
beginning of a time slot. We address this limitation by
allowing nodes to send their feedback at the next time
slot, as shown in Fig. 2(b). As a result, the device uses the
outdated feedback Ht−1

dE for its updates.
Overall, we define the following messages between nodes

n, v, where n ∈ Ev, and summarize them in Table I.
1) mt

1,n→v := xt
n ∈ xt

Ev
; required to evaluate the

coupling constraint ht
v0(xt

v; xt
Ev

) at node v, which is
then used for the dual update of λt

v0 in (23) and the
local term Ht

vL.
2) mt

2,v→n := λt−1
v0 ; feedback required to evaluate Ht−1

nE

for the primal update at node n.
Let us now consider the primal/dual updates of the

proposed approach. First, the dual update (23) remains

𝑓𝑑
𝑡 . , 𝐠𝑑

𝑡 .

Action update

Local processing

Env. feedback

Send 𝑚1
𝑡

𝐱𝑏
𝑡

𝑔𝑏0
𝑡

𝜆𝑏0
𝑡

𝜆𝑏0
𝑡

𝑤𝑑𝑏
𝑡

𝐱𝑑
𝑡+1

𝛌𝑑
𝑡 , 𝐇𝑑𝐿

𝑡

𝐱𝑑
𝑡

𝐇𝑑𝐸
𝑡

Play actions

Send 𝑚2
𝑡

𝐱𝑏𝐸
𝑡

(a) Ideal case

𝑓𝑑
𝑡 . , 𝐠𝑑

𝑡 .

Action update

Local processing

Env. feedback

Send 𝑚1
𝑡 , 𝑚2

𝑡

𝐱𝑏
𝑡

𝑔𝑏0
𝑡

𝜆𝑏0
𝑡

𝜆𝑏0
𝑡−1

𝑤𝑑𝑏
𝑡

𝐱𝑑
𝑡+1

𝛌𝑑
𝑡 , 𝐇𝑑𝐿

𝑡

𝐱𝑑
𝑡

𝐇𝑑𝐸
𝑡−1

Play actions

𝐱𝑏𝐸
𝑡

(b) Proposed approach

Fig. 2: Exchanged messages during time slot t between
device d and BS b.

TABLE I: Messages (mt
1, mt

2) between nodes

From\To Device d′ BS b′ Server s′

Device d − wt
db′ −

BS b λt−1
b0 − yt

bs′

Server s − λt−1
s0 zt

ss′ , λt−1
s0

Algorithm 1 Distributed OCO for node n

1: Initialize: parameters σ, η
2: Set first action x1

n ∈ Ωn and define λ0
n = 0.

3: for t = 1, . . . , T do
4: Play action xt

n

5: Send messages mt
1,n→v to nodes v : n ∈ Ev

6: Receive from environment functions f t
n(.) and gt

n(.)
7: Receive feedback messages mt

2,v→n from nodes v

8: Compute λt
n with (23) ▷ Dual update

9: Update xt+1
n with (24),(30) ▷ Primal update

10: end for

the same and thus, identical to the centralized case. Then,
for the primal update (24), only the gradient term is
modified and approximated by

∇xn
L̂(xt, λt) = Ht

nL + Ht−1
nE . (30)

The steps of our proposed distributed algorithm are
presented in Algorithm 1 for any node n.

D. Performance Guarantees

We make the following standard assumptions, widely
used in online learning literature (e.g., see [8], [11]), and
then formally state our main theorem.

Assumption 1.

• (i) Set Ωn is bounded and convex; specifically it holds
that ∥xn − yn∥ ≤ R, ∀xn, yn ∈ Ωn, for n ∈ D, B, S.

• (ii) For t = 1, . . . , T , functions f t
n and gt

n,i are convex
and Lipschitz with ∥∇xn

f t
n∥ ≤ F ′ and

∥∥∇xn
gt

n,i

∥∥ ≤
G′, for n ∈ D, B, S and gt

n = {gt
n,i}i=1,...,Mn (with Mn

the number of constraints at node n).

Below we write a list of implications that we use for the
proof of our theorem. First, f t

n and gt
n,i are both bounded,

i.e., |f t
n| ≤ F , |gt

n,i| ≤ G′′. Second, since
∥∥∇gt

n,i

∥∥ ≤ G′,
then

∥∥∇ht
n,i

∥∥ ≤ G′ (comes from the definition of gradient
of h). Third, since gt

n,i is bounded, ht
n,i is also bounded by

definition; hence |ht
n,i| ≤ G′′ and ∥ht∥ ≤ G. For simplicity

we write that |f t
n|, ∥∇f t

n∥ ≤ F and |ht
n,i|,

∥∥∇ht
n,i

∥∥ , ∥ht
n∥ ≤

G. Fourth, since gt
n,i is convex, then ht

n,i is as well.
Proofs for the first and fourth implications can be found

in Appendix B of the extended version of our paper [17].



Theorem 1. Given Assumption 1, and σ > 3KG2,
Algorithm 1 guarantees that

RegS(T ) ≤ R2

2η
+ 2REG2

ησ
+ 5

2ηNF 2T ≜ Usr, (31)

RegD(T ) ≤ Usr + R

η
V (x1:T

∗ ), (32)

Fit(T ) ≤
√

ησ

β
MT (Usr + 2NFT ), (33)

where E is the number of edges in the network topology,
K = D(4B + 3

2 ) + B(4S + 3
2 ) + S( 5

2 S − 1), β = 1 − 3KG2

σ

and V (x1:T
∗ ) =

∑T
t=1

∥∥xt
∗ − xt−1

∗
∥∥.

Proof. See Appendix A of the extended version of our
paper [17].

An immediate implication of Theorem 1 is that, for step
size η = O(T −1/2), we have

• RegS(T ) = O(T 1/2)
• RegD(T ) = O(max{T 1/2, T 1/2V (x1:T

∗ )})
• Fit(T ) = O(T 3/4)

We conclude that our distributed algorithm, although
using outdated Lagrange multipliers, achieves sublinear
static regret and fit; if additionally, V (x1:T

∗ ) = o(T 1/2),
then dynamic regret is also sublinear. In fact, we achieve
the same order of bounds as the centralized algorithm in [4]
(in the case where the authors ignore the outages), which
tackles the same setting. Note that choosing η = O(T −1/2)
yields the minimum regret while preserving a sublinear fit.

IV. Performance Evaluation
A. Simulation Setup

Topology and box constraints. We assume a fully
connected setting with nodes D, B, S = 2. Moreover, the
upper bounds of the control variables are as follows: for
every device d, wd0 = 2, wdb = 25, and pdb = 25, for every
BS b, ybC = 30, ybs = 25, and qbs = 25 and for every
server s, zsC = 50, zss = 15 and zss′ = 10.
Costs. We model the cost functions using expressions for
delay (from M/M/11) and power [7]. The local processing
delay of node n for x tasks is cn(x) = 1/(x − x), where x
denotes the capacity of node n; this cost is used to model
ct

d(wt
d0) and ct

ss(zt
ss). Then, the cost related to wireless

offloading, i.e., ct
db(wt

db, pt
db) and ct

bs(yt
bs, qt

bs), is modeled
as ct

nn′(x, y) = 1/(Rt
nn′(y) − x) + 1

2 y2, where Rt
nn′(y) =

bw log2
(
1 + αt

nn′y) is the channel rate. Finally, the delays
for offloading to the cloud, i.e. ct

bC(yt
bC) and ct

sC(zt
sC), are

modeled as ct
nC(x) = dt

nCx, where dt
nC is a time-varying

unknown environment parameter.
Unknown variables. For each time slot t we need: (a)
channel gains αt

db, αt
bs, (b) cloud delay costs dt

bC , dt
sC , and

(c) traffic requests rt. We model (a) and (b) as random
variables sampled from U(8, 15) and U(3, 10) respectively.

1To avoid numerical instabilities, e.g., M/M/1 delay becoming
infinite, we use standard convex extensions [4].

For (c), we mainly use the public Milano dataset [18] which
includes Internet traffic demand (measured in MBs) that
arrives to BSs in the form of timeseries. We extract the
traffic of 2 BS, and use it to simulate the computation
demand of our D = 2 devices. We also provide results
using synthetic demands, drawn from U(1, 10).
Metrics and Baselines. The performance is evaluated
using the static and dynamic regrets (the respective
benchmarks are found using CVXPY [19]), and the fit.
We plot these metrics for proposed Algorithm 1, which we
call Cooperative, and for two more OCO-based baselines
with different level of information each. The first one,
Selfish, is a distributed algorithm with no information
exchange between nodes; i.e. Ht

nE = 0 in (25). While the
second, Centralized, is an algorithm where a centralized
controller, with access to all information, makes the exact
OCO updates for our problem (i.e., is optimal). The latter
describes the State-of-Art algorithm presented in [4].

B. Simulation Results
In all our plots, the x-axis represents the horizon T ,

which we vary from 0 to 300 time slots. For each algorithm,
we plot the average value across 4 independent runs and
with shade the corresponding standard deviation. Notice
that all metrics are normalized by T .

Our setup is challenging for a distributed algorithm, as
the flow conservation constraints couple different nodes.
To this end, we first investigate the Fit(T ) for the Milano
and the synthetic datasets in Figs. 3(a), 3(b). The fit
of Centralized quickly converges to zero, suggesting that
it learns to play actions that respect most of the time-
varying constraints; the reason is that it performs the
best possible primal and dual updates with the freshest
information. The fit of (proposed method) Cooperative
converges almost together with Centralized for Milano
demands (Fig. 3(a)), and slightly slower for the synthetic
ones (Fig. 3(b)). Therefore, the modified gradients used
by Cooperative suffice in order to satisfy the constraints
in the long-run. Finally, Selfish exemplifies the necessity
of at least some information exchange between the nodes;
we can see in both figures the fit increasing. This behavior
is expected, as the Fit(T ) of Centralized and Cooperative
is sublinear, whereas the one of Selfish can be shown to
be linear as its updates totally ignore the coupling (flow
conservation) constraints.

Having discussed the “feasibility” aspect of these
algorithms (i.e., how they perform in terms of constraints)
we now focus on the objective function and in particular
on the regrets in Figs. 3(c), 3(d). We plot these metrics
only for Milano dataset; but the respective plots for the
synthetic one are similar. A first observation is that the
regrets of Selfish are the lowest among all three methods.
This should not come as a surprise, since by construction,
the algorithm solves a more relaxed version of the problem
(ignores flow constraints) and therefore can achieve better
cost values. Centralized has slightly higher regrets, which



0 50 100 150 200 250 300
T

0

2

4

6

8

10
Fi
tT
/T

Selfish
Cooperative
Centralized

200 250 300

1.0

1.2

(a) Fit - Milano

0 50 100 150 200 250 300
T

2

4

6

8

10

12

14

16

18

Fi
tT
/T Selfish

Cooperative
Centralized

(b) Fit - Synthetic

0 50 100 150 200 250 300
T

0.0

0.5

1.0

1.5

2.0

2.5

Re
gT s
/T

Cooperative
Centralized
Selfish

200 250 300
−0.10

−0.05

(c) Static regret - Milano

0 50 100 150 200 250 300
T

0.0

0.5

1.0

1.5

2.0

2.5

Re
gT d
/T

Cooperative
Centralized
Selfish

200 250 300

0.05

0.10

(d) Dynamic Regret - Milano

Fig. 3: Performance metrics vs horizon length T

0 50 100 150 200 250 300
T

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(R
eg

T d
−
Re

gT s
)/T

(a)

0 50 100 150 200 250 300
Time steps

2

4

6

8

10

12

De
m

an
ds

r1
r2

(b)

Fig. 4: Milano dataset: (a) Difference of regrets (and
benchmarks) vs horizon T ; (b) Demands of the devices
over time.

is justified by its effort to also satisfy the fit. Finally,
Cooperative has regrets that also go to zero and are very
close to the ones of (the optimal baseline) Centralized.

Finally, we comment on the jump at T ≈ 110 in
Fig. 3(c), which is not present in Fig. 3(d). The difference
of the two plots has to do with the benchmarks; in
Fig. 4(a), the y-axis is in fact the cost gap between
them, i.e. 1

T

∑T
t=1

(
f t(x∗) − f t(xt

∗)
)

; and in that plot
we obviously see that same jump. This behavior can
be explained by the change of demand in Fig. 4(b).
Essentially, the static benchmark, for T > 110, solves
an optimization problem by finding a feasible x∗ for that
extreme demand (at T ≈ 110), and will be then more
constrained compared to the dynamic benchmark, which
solves the problem for each t individually.

V. Conclusions
We revisit the problem of resource allocation in

an IoT network, where devices can process part of
the traffic requests, and/or offload the rest to more
powerful computational entities (cloud, edge servers).
The distributed nature of the setting, as well as the
unpredictable environment, motivated us to model the

network nodes (devices, BSs, servers) as distributed OCO
actors. However, the nodes of the network are naturally
coupled by flow conservation constraints at each node,
which we model as long-term constraints, and as a result
a fully decentralized algorithm is no longer possible.

In order to address this challenge, we propose a
distributed OCO algorithm with limited communication
between nodes, which practically leads to partially
outdated gradient updates. Nevertheless, we show
theoretically that our algorithm achieves sub-linear
regret bound O(T 1/2) and sub-linear constraint violation
bound O(T 3/4), which is the same order of bounds as a
centralized algorithm for this setting. Numerical results
based on real data traces confirm our theoretical findings.
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